Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO Mol Med ; 13(12): e14072, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34755470

RESUMEN

Adenine nucleotide translocase-1 (ANT1) is an ADP/ATP transporter protein located in the inner mitochondrial membrane. ANT1 is involved not only in the processes of ADP/ATP exchange but also in the composition of the mitochondrial membrane permeability transition pore (mPTP); and the function of ANT1 is closely related to its own conformational changes. Notably, various viral proteins can interact directly with ANT1 to influence mitochondrial membrane potential by regulating the opening of mPTP, thereby affecting tumor cell fate. The Epstein-Barr virus (EBV) encodes the key tumorigenic protein, latent membrane protein 1 (LMP1), which plays a pivotal role in promoting therapeutic resistance in related tumors. In our study, we identified a novel mechanism for EBV-LMP1-induced alteration of ANT1 conformation in cisplatin resistance in nasopharyngeal carcinoma. Here, we found that EBV-LMP1 localizes to the inner mitochondrial membrane and inhibits the opening of mPTP by binding to ANT1, thereby favoring tumor cell survival and drug resistance. The ANT1 conformational inhibitor carboxyatractyloside (CATR) in combination with cisplatin improved the chemosensitivity of EBV-LMP1-positive cells. This finding confirms that ANT1 is a novel therapeutic target for overcoming cisplatin resistance in the future.


Asunto(s)
Translocador 1 del Nucleótido Adenina/química , Cisplatino , Infecciones por Virus de Epstein-Barr , Cisplatino/metabolismo , Cisplatino/farmacología , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Herpesvirus Humano 4/metabolismo , Humanos , Translocasas Mitocondriales de ADP y ATP/química , Translocasas Mitocondriales de ADP y ATP/metabolismo , Membranas Mitocondriales/metabolismo
2.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801254

RESUMEN

Adenine nucleotide translocase (ANT) is a well-known mitochondrial exchanger of ATP against ADP. In contrast, few studies have shown that ANT also mediates proton transport across the inner mitochondrial membrane. The results of these studies are controversial and lead to different hypotheses about molecular transport mechanisms. We hypothesized that the H+-transport mediated by ANT and uncoupling proteins (UCP) has a similar regulation pattern and can be explained by the fatty acid cycling concept. The reconstitution of purified recombinant ANT1 in the planar lipid bilayers allowed us to measure the membrane current after the direct application of transmembrane potential ΔΨ, which would correspond to the mitochondrial states III and IV. Experimental results reveal that ANT1 does not contribute to a basal proton leak. Instead, it mediates H+ transport only in the presence of long-chain fatty acids (FA), as already known for UCPs. It depends on FA chain length and saturation, implying that FA's transport is confined to the lipid-protein interface. Purine nucleotides with the preference for ATP and ADP inhibited H+ transport. Specific inhibitors of ATP/ADP transport, carboxyatractyloside or bongkrekic acid, also decreased proton transport. The H+ turnover number was calculated based on ANT1 concentration determined by fluorescence correlation spectroscopy and is equal to 14.6 ± 2.5 s-1. Molecular dynamic simulations revealed a large positively charged area at the protein/lipid interface that might facilitate FA anion's transport across the membrane. ANT's dual function-ADP/ATP and H+ transport in the presence of FA-may be important for the regulation of mitochondrial membrane potential and thus for potential-dependent processes in mitochondria. Moreover, the expansion of proton-transport modulating drug targets to ANT1 may improve the therapy of obesity, cancer, steatosis, cardiovascular and neurodegenerative diseases.


Asunto(s)
Translocador 1 del Nucleótido Adenina/química , Translocador 1 del Nucleótido Adenina/metabolismo , Ácidos Grasos/metabolismo , Mitocondrias/metabolismo , Protones , Animales , Transporte Iónico , Potencial de la Membrana Mitocondrial , Ratones , Conformación Proteica
3.
Int J Mol Sci ; 21(17)2020 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-32842667

RESUMEN

Mitochondrial carriers are a family of structurally related proteins responsible for the exchange of metabolites, cofactors and nucleotides between the cytoplasm and mitochondrial matrix. The in silico analysis of the Drosophila melanogaster genome has highlighted the presence of 48 genes encoding putative mitochondrial carriers, but only 20 have been functionally characterized. Despite most Drosophila mitochondrial carrier genes having human homologs and sharing with them 50% or higher sequence identity, D. melanogaster genes display peculiar differences from their human counterparts: (1) in the fruit fly, many genes encode more transcript isoforms or are duplicated, resulting in the presence of numerous subfamilies in the genome; (2) the expression of the energy-producing genes in D. melanogaster is coordinated from a motif known as Nuclear Respiratory Gene (NRG), a palindromic 8-bp sequence; (3) fruit-fly duplicated genes encoding mitochondrial carriers show a testis-biased expression pattern, probably in order to keep a duplicate copy in the genome. Here, we review the main features, biological activities and role in the metabolism of the D. melanogaster mitochondrial carriers characterized to date, highlighting similarities and differences with their human counterparts. Such knowledge is very important for obtaining an integrated view of mitochondrial function in D. melanogaster metabolism.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Translocador 1 del Nucleótido Adenina/química , Translocador 1 del Nucleótido Adenina/genética , Translocador 1 del Nucleótido Adenina/metabolismo , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Humanos , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo
4.
Science ; 362(6416): 829-834, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30442809

RESUMEN

Membrane proteins reside in lipid bilayers and are typically extracted from this environment for study, which often compromises their integrity. In this work, we ejected intact assemblies from membranes, without chemical disruption, and used mass spectrometry to define their composition. From Escherichia coli outer membranes, we identified a chaperone-porin association and lipid interactions in the ß-barrel assembly machinery. We observed efflux pumps bridging inner and outer membranes, and from inner membranes we identified a pentameric pore of TonB, as well as the protein-conducting channel SecYEG in association with F1FO adenosine triphosphate (ATP) synthase. Intact mitochondrial membranes from Bos taurus yielded respiratory complexes and fatty acid-bound dimers of the ADP (adenosine diphosphate)/ATP translocase (ANT-1). These results highlight the importance of native membrane environments for retaining small-molecule binding, subunit interactions, and associated chaperones of the membrane proteome.


Asunto(s)
Translocador 1 del Nucleótido Adenina/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Canales de Translocación SEC/metabolismo , Translocador 1 del Nucleótido Adenina/química , Animales , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/química , Bovinos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Espectrometría de Masas , Proteínas de la Membrana/química , Membranas Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/química , Chaperonas Moleculares/química , Porinas/química , Porinas/metabolismo , Conformación Proteica en Lámina beta , Proteoma/química , Proteoma/metabolismo , Canales de Translocación SEC/química
5.
Biochemistry ; 55(45): 6238-6249, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27786441

RESUMEN

The exchange of ADP and ATP across the inner mitochondrial membrane is a fundamental cellular process. This exchange is facilitated by the adenine nucleotide translocase, the structure and function of which are critically dependent on the signature phospholipid of mitochondria, cardiolipin (CL). Here we employ multiscale molecular dynamics simulations to investigate CL interactions within a membrane environment. Using simulations at both coarse-grained and atomistic resolutions, we identify three CL binding sites on the translocase, in agreement with those seen in crystal structures and inferred from nuclear magnetic resonance measurements. Characterization of the free energy landscape for lateral lipid interaction via potential of mean force calculations demonstrates the strength of interaction compared to those of binding sites on other mitochondrial membrane proteins, as well as their selectivity for CL over other phospholipids. Extending the analysis to other members of the family, yeast Aac2p and mouse uncoupling protein 2, suggests a degree of conservation. Simulation of large patches of a model mitochondrial membrane containing multiple copies of the translocase shows that CL interactions persist in the presence of protein-protein interactions and suggests CL may mediate interactions between translocases. This study provides a key example of how computational microscopy may be used to shed light on regulatory lipid-protein interactions.


Asunto(s)
Translocador 1 del Nucleótido Adenina/metabolismo , Cardiolipinas/metabolismo , Membranas Mitocondriales/metabolismo , Simulación de Dinámica Molecular , Translocador 1 del Nucleótido Adenina/química , Animales , Sitios de Unión , Cardiolipinas/química , Bovinos , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Ratones , Translocasas Mitocondriales de ADP y ATP/química , Translocasas Mitocondriales de ADP y ATP/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Termodinámica , Proteína Desacopladora 2/química , Proteína Desacopladora 2/metabolismo
6.
Biochemistry ; 53(23): 3817-29, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24884163

RESUMEN

Proteomics techniques have revealed that lysine acetylation is abundant in mitochondrial proteins. This study was undertaken (1) to determine the relationship between mitochondrial protein acetylation and insulin sensitivity in human skeletal muscle, identifying key acetylated proteins, and (2) to use molecular modeling techniques to understand the functional consequences of acetylation of adenine nucleotide translocase 1 (ANT1), which we found to be abundantly acetylated. Eight lean and eight obese nondiabetic subjects had euglycemic clamps and muscle biopsies for isolation of mitochondrial proteins and proteomics analysis. A number of acetylated mitochondrial proteins were identified in muscle biopsies. Overall, acetylation of mitochondrial proteins was correlated with insulin action (r = 0.60; P < 0.05). Of the acetylated proteins, ANT1, which catalyzes ADP-ATP exchange across the inner mitochondrial membrane, was acetylated at lysines 10, 23, and 92. The extent of acetylation of lysine 23 decreased following exercise, depending on insulin sensitivity. Molecular dynamics modeling and ensemble docking simulations predicted the ADP binding site of ANT1 to be a pocket of positively charged residues, including lysine 23. Calculated ADP-ANT1 binding affinities were physiologically relevant and predicted substantial reductions in affinity upon acetylation of lysine 23. Insertion of these derived binding affinities as parameters into a complete mathematical description of ANT1 kinetics predicted marked reductions in adenine nucleotide flux resulting from acetylation of lysine 23. Therefore, acetylation of ANT1 could have dramatic physiological effects on ADP-ATP exchange. Dysregulation of acetylation of mitochondrial proteins such as ANT1 therefore could be related to changes in mitochondrial function that are associated with insulin resistance.


Asunto(s)
Translocador 1 del Nucleótido Adenina/metabolismo , Adenosina Difosfato/metabolismo , Resistencia a la Insulina , Mitocondrias Musculares/enzimología , Músculo Esquelético/enzimología , Fosforilación Oxidativa , Procesamiento Proteico-Postraduccional , Acetilación , Translocador 1 del Nucleótido Adenina/química , Adenosina Difosfato/química , Adulto , Sitios de Unión , Índice de Masa Corporal , Regulación hacia Abajo , Femenino , Humanos , Lisina/química , Lisina/metabolismo , Masculino , Persona de Mediana Edad , Mitocondrias Musculares/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Actividad Motora , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Obesidad/enzimología , Obesidad/metabolismo
7.
Nature ; 476(7358): 109-13, 2011 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-21785437

RESUMEN

Mitochondrial uncoupling protein 2 (UCP2) is an integral membrane protein in the mitochondrial anion carrier protein family, the members of which facilitate the transport of small molecules across the mitochondrial inner membrane. When the mitochondrial respiratory complex pumps protons from the mitochondrial matrix to the intermembrane space, it builds up an electrochemical potential. A fraction of this electrochemical potential is dissipated as heat, in a process involving leakage of protons back to the matrix. This leakage, or 'uncoupling' of the proton electrochemical potential, is mediated primarily by uncoupling proteins. However, the mechanism of UCP-mediated proton translocation across the lipid bilayer is unknown. Here we describe a solution-NMR method for structural characterization of UCP2. The method, which overcomes some of the challenges associated with membrane-protein structure determination, combines orientation restraints derived from NMR residual dipolar couplings (RDCs) and semiquantitative distance restraints from paramagnetic relaxation enhancement (PRE) measurements. The local and secondary structures of the protein were determined by piecing together molecular fragments from the Protein Data Bank that best fit experimental RDCs from samples weakly aligned in a DNA nanotube liquid crystal. The RDCs also determine the relative orientation of the secondary structural segments, and the PRE restraints provide their spatial arrangement in the tertiary fold. UCP2 closely resembles the bovine ADP/ATP carrier (the only carrier protein of known structure), but the relative orientations of the helical segments are different, resulting in a wider opening on the matrix side of the inner membrane. Moreover, the nitroxide-labelled GDP binds inside the channel and seems to be closer to transmembrane helices 1-4. We believe that this biophysical approach can be applied to other membrane proteins and, in particular, to other mitochondrial carriers, not only for structure determination but also to characterize various conformational states of these proteins linked to substrate transport.


Asunto(s)
Canales Iónicos/química , Proteínas Mitocondriales/química , Resonancia Magnética Nuclear Biomolecular/métodos , Translocador 1 del Nucleótido Adenina/química , Translocador 1 del Nucleótido Adenina/metabolismo , Animales , Sitios de Unión , Bovinos , Bases de Datos de Proteínas , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Canales Iónicos/metabolismo , Ratones , Translocasas Mitocondriales de ADP y ATP/química , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Óxidos de Nitrógeno/química , Óxidos de Nitrógeno/metabolismo , Conformación Proteica , Proteína Desacopladora 2
8.
Mol Biol Rep ; 37(6): 2743-8, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19763879

RESUMEN

The complete coding sequences of three of sheep genes SLC25A4, SLC25A5 and SLC25A6 were firstly amplified using the reverse transcriptase polymerase chain reaction (RT-PCR) according to the conserved sequence information of the cattle or other mammals and known highly homologous sheep ESTs. Sheep SLC25A4, SLC25A5 and SLC25A6 genes encode three corresponding proteins of 298 amino acids which contain the identically conserved putative mitochondrial carrier protein domain. Sheep SLC25A4 protein has high homology with the SLC25A4 proteins of six species-cattle (99%), human (95%), rat (95%), mouse (94%), dog (94%) and chicken (89%). Sheep SLC25A5 protein has high identity with the SLC25A5 proteins of five species-cattle (100%), dog (99%), mouse (98%), rat (98%) and human (98%). Sheep SLC25A6 protein also has high homology with the SLC25A6 proteins of four species-cattle (99%), human (97%), pig (97%) and chicken (93%). The phylogenetic tree analysis demonstrated that sheep SLC25A4, SLC25A5 and SLC25A6 proteins share a common ancestor. Moreover, SLC25A4, SLC25A5 and SLC25A6 proteins present stronger interaction each other. The tissue expression analysis indicated that sheep SLC25A4, SLC25A5 and SLC25A6 genes were expressed in a range of tissues including leg muscle, kidney, skin, longissimus dorsi muscle, spleen, heart and liver. Our experiment is the first to provide the primary foundation for further insight into these three sheep genes.


Asunto(s)
Translocador 1 del Nucleótido Adenina/genética , Translocador 2 del Nucleótido Adenina/genética , Translocador 3 del Nucleótido Adenina/genética , Perfilación de la Expresión Génica , Ovinos/genética , Translocador 1 del Nucleótido Adenina/química , Translocador 1 del Nucleótido Adenina/metabolismo , Translocador 2 del Nucleótido Adenina/química , Translocador 2 del Nucleótido Adenina/metabolismo , Translocador 3 del Nucleótido Adenina/química , Translocador 3 del Nucleótido Adenina/metabolismo , Animales , Secuencia de Bases , Regulación de la Expresión Génica , Datos de Secuencia Molecular , Filogenia , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN
9.
Am J Physiol Cell Physiol ; 298(3): C740-8, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20007455

RESUMEN

Phosphorylation of adenine nucleotide translocator 1 (ANT1) at residue Y194, which is part of the aromatic ladder located within the lumen of the carrier, critically regulates mitochondrial metabolism. Recent data support the concept that members of the Src family of nonreceptor tyrosine kinases are constitutively present in mitochondria and key to regulation of mitochondrial function. Herein, we demonstrate that site mutations of ANT1 (Y190-->F190, Y194-->F194) mimicking dephosphorylation of the aromatic ladder resulted in loss of oxidative growth and ADP/ATP exchange activity in respiration-incompetent yeast expressing mutant chimeric yN-hANT1. ANT1 is phosphorylated at Y194 by the Src family kinase members Src and Lck, and increased phosphorylation is tightly linked to reduced cell injury in preconditioned protected vs. unprotected cardiac mitochondria. Molecular dynamics simulations find the overall structure of the phosphorylated ANT1 stable, but with an increased steric flexibility in the region of the aromatic ladder, matrix loop m2, and four helix-linking regions. Combined with an analysis of the putative cytosolic salt bridge network, we reason that the effect of phosphorylation on transport is likely due to an accelerated transition between the main two conformational states (c<-->m) of the carrier during the transport cycle. Since "aromatic signatures" are typical for other mitochondrial carrier proteins with important biological functions, our results may be more general and applicable to these carriers.


Asunto(s)
Translocador 1 del Nucleótido Adenina/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Mitocondrias/enzimología , Proteínas de Transporte de Nucleótidos/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Familia-src Quinasas/metabolismo , Translocador 1 del Nucleótido Adenina/química , Translocador 1 del Nucleótido Adenina/genética , Simulación por Computador , Células HeLa , Humanos , Peróxido de Hidrógeno/farmacología , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/genética , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Mitocondrias/efectos de los fármacos , Translocasas Mitocondriales de ADP y ATP/genética , Translocasas Mitocondriales de ADP y ATP/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Miocardio/enzimología , Proteínas de Transporte de Nucleótidos/química , Proteínas de Transporte de Nucleótidos/genética , Fosforilación , Conformación Proteica , Inhibidores de Proteínas Quinasas/farmacología , Estabilidad Proteica , Estructura Terciaria de Proteína , Pirimidinas/farmacología , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad , Transfección , Tirosina , Vanadatos/farmacología , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/genética
10.
Biochem Biophys Res Commun ; 341(3): 810-5, 2006 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-16438935

RESUMEN

Mutations in the human ANT1 gene, coding for the ADP/ATP carrier, are responsible for the autosomal dominant and recessive forms of progressive external ophthalmoplegia, mitochondrial disorders characterized by the presence of multiple deletions of mitochondrial DNA in affected tissues. By introducing these mutations at equivalent position in AAC2, the yeast orthologue of ANT1, we created a suitable model for validation of the pathogenicity of the human mutations. Here, we describe the use of this approach in the case of mutations mapping in domains not conserved between human and yeast, taking advantage of a yAAC2/hANT1 chimeric construction as a template to introduce pathogenic hANT1 mutations. Application to the case of the D104G mutation indicated that the chimeric construction could be a tool for validation of pathogenic ANT1 mutations in yeast.


Asunto(s)
Translocador 1 del Nucleótido Adenina/genética , Ácido Aspártico/genética , Prueba de Complementación Genética , Modelos Biológicos , Mutación/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Translocador 1 del Nucleótido Adenina/química , Translocador 1 del Nucleótido Adenina/metabolismo , Alelos , Secuencia de Aminoácidos , Ácido Aspártico/metabolismo , Proliferación Celular , Secuencia Conservada , Humanos , Translocasas Mitocondriales de ADP y ATP/química , Translocasas Mitocondriales de ADP y ATP/genética , Translocasas Mitocondriales de ADP y ATP/metabolismo , Datos de Secuencia Molecular , Oftalmoplejía/genética , Oftalmoplejía/metabolismo , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
11.
Biochem Biophys Res Commun ; 341(1): 192-201, 2006 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-16414017

RESUMEN

Previously, we identified a transcriptional coactivator for the activation function-1 (AF-1) domain of the human androgen receptor (AR) and designated it androgen receptor N-terminal domain transactivating protein-1 (ANT-1). This coactivator, which contains multiple tetratricopeptide repeat (TPR) motifs from amino acid (aa) 294, is identical to a component of U5 small nuclear ribonucleoprotein particles and binds specifically to the AR or glucocorticoid receptor. Here, we identified four distinct functional domains. The AR-AF-1-binding domain, which bound to either aa 180-360 or 360-532 in AR-AF-1, clearly overlapped with TAU-1 and TAU-5. This domain and the subnuclear speckle formation domain in ANT-1 were assigned within the TPR motifs, while the transactivating and nuclear localization signal domains resided within the N-terminal sequence. The existence of these functional domains may further support the idea that ANT-1 can function as an AR-AF-1-specific coactivator while mediating a transcription-splicing coupling.


Asunto(s)
Translocador 1 del Nucleótido Adenina/química , Translocador 1 del Nucleótido Adenina/metabolismo , Receptores Androgénicos/química , Receptores Androgénicos/metabolismo , Fracciones Subcelulares/metabolismo , Translocador 1 del Nucleótido Adenina/genética , Sustitución de Aminoácidos , Animales , Sitios de Unión , Células COS , Chlorocebus aethiops , Ratones , Mutagénesis Sitio-Dirigida , Células 3T3 NIH , Unión Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad
12.
J Biol Chem ; 279(19): 20411-21, 2004 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-14976187

RESUMEN

The existence of a biochemical threshold effect in the metabolic expression of oxidative phosphorylation deficiencies has considerable implications for the understanding of mitochondrial bioenergetics and the study of mitochondrial diseases. However, the molecular bases of this phenomenon remain unclear. We report here a new mechanism to explain this threshold effect, based on a reserve of enzymes not initially participating in the respiratory rate that can be activated either to respond to a flux increase or to compensate for a defect induced by a mutation. We show that this mobilization occurs through 1) the assembly of inactive adenine nucleotide translocator isoform 1 subunits into oligomeric active carriers or 2) conformational changes in the adenine nucleotide translocator isoform 1 in a permeability transition pore-like structure. We discuss how these transitions are sensitive to the steady state of oxidative phosphorylation functioning or tissue and analyze their consequences on the threshold effect.


Asunto(s)
Nucleótidos de Adenina/química , Atractilósido/análogos & derivados , Enfermedades Mitocondriales/metabolismo , Translocador 1 del Nucleótido Adenina/química , Animales , Atractilósido/farmacología , Biopsia , Western Blotting , Transporte de Electrón , Electroforesis en Gel de Poliacrilamida , Humanos , Cinética , Masculino , Mitocondrias/metabolismo , Translocasas Mitocondriales de ADP y ATP/metabolismo , Modelos Biológicos , Músculos/metabolismo , Mutación , Fosforilación Oxidativa , Oxígeno/metabolismo , Consumo de Oxígeno , Fosforilación , Conformación Proteica , Isoformas de Proteínas , Ratas , Ratas Wistar , Distribución Tisular
13.
J Biol Chem ; 278(36): 33928-35, 2003 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-12821666

RESUMEN

Mitochondrial permeability transition (MPT) has been proposed to play a key role in cell death. Downstream MPT events include the release of apoptogenic factors that sets in motion the mitochondrial apoptosome leading to caspase activation. The current work examined the regulation of MPT by membrane fluidity modulated upon cholesterol enrichment. Mitochondria enriched in cholesterol displayed increased microviscosity resulting in impaired MPT induced by atractyloside, a c-conformation stabilizing ligand of the adenine nucleotide translocator (ANT). This effect was dependent on the dose of cholesterol loaded and reversed upon the fluidization of mitochondria by the fatty acid derivative A2C. Mitoplasts derived from cholesterol-enriched mitochondria responded to atractyloside in a similar fashion as intact mitochondria, indicating that a significant amount of cholesterol is still found in the inner membrane. The effects of cholesterol on MPT induced by atractyloside were mirrored by the release of intermembrane proteins, cytochrome c, Smac/Diablo, and apoptosis inducing factor. However, cholesterol loading did not affect the uptake rate of adenine nucleotide hence dissociating the function of ANT as a MPT-mediated protein from its adenine nucleotide exchange function. Thus, these findings indicate that the ability of atractyloside to induce MPT via ANT requires an appropriate membrane fluidity range.


Asunto(s)
Translocador 1 del Nucleótido Adenina/metabolismo , Colesterol/fisiología , Adenina/química , Translocador 1 del Nucleótido Adenina/química , Animales , Apoptosis , Atractilósido/química , Atractilósido/farmacología , Transporte Biológico , Western Blotting , Muerte Celular , Colesterol/metabolismo , Grupo Citocromo c/metabolismo , Inhibidores Enzimáticos/farmacología , Microscopía Electrónica , Mitocondrias/metabolismo , Mitocondrias Hepáticas/metabolismo , Permeabilidad , Fosfolípidos/metabolismo , Conformación Proteica , Ratas , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...